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BAYESIAN ANALYSIS IN STRATEGIC MANAGEMENT RESEARCH:  

TIME TO UPDATE YOUR PRIORS 

 

ABSTRACT 

Bayesian statistical methods offer an important and increasingly endorsed alternative to 

traditional statistical significance testing. This paper presents a brief introduction to Bayesian 

methods, providing guidance to strategic management researchers who may wish to incorporate 

these methods into their research. We describe the advantages of Bayesian approaches and 

explain the steps involved in conducting and reporting a Bayesian analysis. For illustration, we 

provide a sample analysis, including all associated code using version 15 of Stata, which features 

significantly augmented Bayesian capabilities.  



1 
 

INTRODUCTION 

Methodological rigor and the reliability of quantitative empirical research in strategic 

management continues to draw substantial attention (Bergh et al., 2017; Goldfarb and King, 

2016). Recent articles have proposed and discussed a wide range of recommendations for 

improvements (Bettis et al., 2016). These recommendations, however, are focused on 

improvements within the existing paradigm of null hypothesis significance testing. In contrast, 

our aim is to provide guidance to strategic management researchers who are considering 

Bayesian statistics as an alternative paradigm for empirical investigation in their future research 

projects.  

Limitations of traditional statistical significance tests and criticism of how they are 

applied have garnered increasing attention in the social sciences (e.g., Cohen, 1994; Gigerenzer, 

2004; Schwab et al., 2011; Wasserstein and Lazar, 2016). Recently, several of these critiques 

have advocated for Bayesian analysis as an alternative to statistical significance tests (Gelman, 

2015; Zyphur and Oswald, 2015). Bayesian methods have been productively applied across a 

wide number of research areas, leading to “a revolution in fields ranging from genetics to 

marketing” (Kruschke, Aguinis, and Joo, 2012: 722). Recent special issues on the topic have 

appeared in disciplines from psychology (Vandekerckhove, Rouder, and Kruschke, 2018) to 

econometrics (Kaufmann, Frühwirth-Schnatter, and van Dijk, 2019) and management (Zyphur, 

Oswald, and Rupp, 2015). Among other benefits, Bayesian methods produce results that 

integrate existing knowledge, focus greater attention on the size and the uncertainty of effects, 

and are easier to understand and communicate. More broadly, McKee and Miller’s (2015: 477) 

survey of a panel of 26 “institutional elites” (e.g., journal editors, former presidents of the 

Academy of Management and Strategic Management Society) reported that a “vast majority of 
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scholars in our panel championed increased use of Bayesian methodology within the 

organizational sciences.”  

In spite of these endorsements, Bayesian studies in management research have remained 

rare (Zyphur, Oswald and Rupp, 2015; Kruschke, Aguinis, and Joo, 2012). Of the 849 articles 

listed by Web of Science as published in SMJ over the period 2010 – 2017, only four used 

Bayesian methods. Of the 1,467 articles published in AMJ and SMJ from 2001-2010, only three 

used Bayesian methods (Kruschke, Aguinis, and Joo, 2012). The lack of easy-to-use software to 

undertake Bayesian analysis has been a significant challenge to the application of these methods. 

This barrier, however, is rapidly eroding. In addition to continuing improvements in Bayes-

specific software, commonly used software packages have begun to incorporate Bayesian 

capabilities. Stata Corporation, for example, introduced Bayesian commands into its software 

with the release of Version 14 in 2015. Version 15, released in 2017, included expanded Bayes 

functionality with increased ease-of-use (StataCorp, 2017).1 Similarly, SPSS recently added 

Bayesian capabilities (IBM Corp., 2017). 

A final challenge remains the limited familiarity of strategy researchers with these 

methods, a challenge this article targets. The discussion of Bayesian analysis and the 

introduction of illustrative examples in this article offers a starting point to strategic management 

researchers who wish to experiment with Bayesian methods. This article cannot, however, 

provide an exhaustive review. Instead, it provides an overview with references to more in-depth 

treatment of relevant topics. It begins by comparing Bayesian approaches to the existing 

frequentist paradigm; it then provides a review of the specific advantages of the Bayesian 

approach, which includes highlighting some of the limitations of statistical significance 

                                                           
1 Stata released Version 16 in June of 2019 with additional improvements to its Bayesian capabilities. 
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applications in strategy research. It continues by discussing how Bayesian methods are 

particularly appropriate for research in strategic management while also noting some of the 

challenges associated with adoption of these methods. Finally, this article outlines the specific 

steps of a typical Bayesian analysis and concludes with a sample analysis that demonstrates the 

capabilities available in Stata to easily conduct and report Bayesian analyses. Appendices 

provide definitions of key terms along with all code used to conduct the sample analyses. In the 

end, the provided information should encourage researchers to consider Bayesian methods and to 

start exploiting their unique advantages. 

Frequentist versus Bayesian Approaches 

In general, statistical inference involves drawing conclusions based on data. More specifically, it 

is the process of drawing conclusions about population parameters from sample statistics. The 

currently dominant approach to statistical inference in management is based on a frequentist 

view of probability. Under this view, probability represents an estimate of the relative frequency 

of some outcome in a population. Say, for example, that we are interested in the relationship 

between prior acquisition experience and acquisition activity in a population. Frequentists 

assume that there is a certain specific, fixed relationship between prior experience and 

acquisition activity in this population. Observations of this relationship, however, are assumed to 

vary across samples drawn from this population (sampling variation). For randomly drawn 

samples, a random-sampling distribution can be used to estimate the probability of observing a 

specific parameter value or a more extreme parameter value in the collected data based on the 

assumption that the null-hypothesis of no effect is true. This probability statement is referred to 

as the p-value.  
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In statistical significance tests, two hypotheses are postulated, a null and an alternative. 

The null hypothesis typically asserts that a particular independent variable has zero or no effect 

on the dependent variable. The frequentists decide whether to reject this null hypothesis using 

the p-value as a test statistic. A p-value indicates the probability of obtaining a parameter 

estimate of similar or more extreme size, if the null hypothesis were true and the sample was 

randomly selected. If a p-value is very small (e.g., less than 0.05), the researcher may conclude 

that the difference of the observed parameter value from zero in the sample is unlikely to be just 

the result of random sampling. In this case, the researcher will reject the null hypothesis and 

concludes that the observed data provide evidence supportive of the hypothesized effect. As 

Bettis et al. (2016) noted, such null hypothesis significance tests are the core workhorses of 

quantitative empirical research in strategic management. 

This frequentist approach provides probability statements for random sampling having 

affected observed estimates conditional on the null hypothesis being true. The objective is to 

reject the null hypothesis. Even if successful, frequentist approaches do not provide direct 

probability statements about hypothesized effects. In contrast, Bayesian approaches are not 

concerned with whether a null hypothesis should be rejected. Instead, Bayesian approaches use 

the observed statistics in the sample to estimate the probability of a hypothesized effect in the 

population. That is, a Bayesian would make a statement along the lines of “given prior 

experience and the observed data, there is a probability of 0.95 that 1  is greater than 0.2.” In 

this sense, Bayesian models lead to more meaningful interpretations of empirical data focused on 

the size and the uncertainty of hypothesized effects. 
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Inference in Bayesian analysis is based on posterior distributions, namely the probability 

of population parameters (θ) given the observed data (D), i.e.,  |P D . Observed data is 

combined with prior information via Bayes’ rule: 

  
   

 

|
|

P D P
P D

P D

 
        (1) 

In Bayesian inference, each of the four terms in Equation 1 has a specific name.  P   represents 

the expected probability for θ before data collection and is referred to as the prior.  |P D   is 

called the likelihood and represents the probability or likelihood of observing the particular data 

given the prior θ. The left-hand term of interest,  |P D , is called the posterior, and it is a 

combination of the likelihood and the prior. The term in the denominator of the right-hand side, 

 P D , is the marginal likelihood, and it acts as a normalizing constant to scale the posterior 

density to make it a proper density. Because this term is simply a scaling constant, it is often 

excluded and Bayes’ theorem is expressed as a proportion: 

      | |P D P D P         (2) 

Equation 2 states that the posterior is proportional to the likelihood times the prior. That is, a 

posterior distribution represents a weighted average of information about the parameters in the 

observed data and knowledge about the parameters prior to observing the data; the data exert 

greater influence as the size of the sample increases (Gelman et al., 2014). 

 Historically, one of the major challenges to the application of Bayesian statistics has been 

the difficulty of computing posterior distributions, which typically involve very complex 

mathematical functions. The past few decades, however, have seen advances in both conceptual 

work and computing power that have fostered estimation via simulation. More specifically, 
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posterior distributions of parameters in Bayesian estimation are now typically generated via 

Markov Chain Monte Carlo (MCMC) methods. MCMC algorithms, however, require thousands 

and sometime tens of thousands of iterations in order to adequately estimate posterior 

distributions. Hence, advancements in computing power have been critical to the growing 

applications of Bayesian methods. The basic idea is to home in on an approximate representation 

of the posterior by drawing a large number of representative random samples of parameter values 

from the observed data. As the number of iterations grows, the generated sets of estimates are 

expected to converge and to provide a reasonable approximation of the posterior distribution. 

Extensive reviews of MCMC simulation in Bayesian analysis are available (e.g., Gelman et al., 

2014; Hahn, 2014; Kruschke, 2015; McElreath, 2016).   

Benefits of Bayesian approach 

Bayesian and frequentist analyses represent fundamentally different approaches to statistical 

inference. So why might a researcher prefer a Bayesian approach relative to the traditional 

approach? We contend that the Bayesian approach allows researchers to avoid several limitations 

of statistical significance tests while offering a variety of attractive properties, several of which 

are particularly relevant to strategic management research.  

Limits of statistical significance testing. Numerous authors provide comprehensive 

discussions of the limitations of statistical significance tests and critiques of its current usage 

(e.g., Cohen, 1994; Gigerenzer, 2004; Schwab et al., 2011; Hubbard, 2004, 2015). For example, 

Schwab et al. (2011) highlight dichotomous evaluation based on a fixed p-value threshold and 

sensitivity of results to sample size. They also note that observing absolutely no effect is a highly 

implausible outcome of empirical tests. Hence, rejecting an implausible description of reality 

provides little or no valuable information. Wasserstein & Lazar (2016) emphasize the critique 
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that researchers often apply statistical significance tests to inappropriate data and misinterpret the 

results. Below, we discuss a few examples of the most serious concerns in more detail. The first 

and perhaps most important concern with the frequentist approach is that it does not answer the 

question of usual interest to researchers. Typically, researchers want to know how likely an 

effect is given some observed data, i.e., P(θ | D). The frequentist approach instead assesses the 

probability of random sampling as an explanation for parameter values (or more extreme values) 

observed in the data assuming the null hypothesis were true, i.e., P(D | θ). These are two 

fundamentally different probabilities (Cohen, 1994).  

Following the frequentist approach also creates challenges for communicating findings to 

practitioners. Researchers can either attempt to communicate the precise meaning of statistical 

significance (something along the lines of “if the effect we think is true is not actually true, we 

would expect to find an effect as large or larger than this being the result of random sampling 

only five percent of the time”), or run the risk that managers will misinterpret reported findings 

into direct probability statements about the hypothesized effect. In the end, it is also not clear 

whether rejecting a null hypothesis provides any profound new insights. As McShane et al. 

(2017: 6) summarize “given that effects are generally small and variable, the assumption of zero 

effect is false. Further, given that measurements are generally noisy and systematically so, even 

were an effect truly zero, it would not be in any study designed to test it.” 

An additional noteworthy concern is that statistical significance tests assume several 

underlying conditions apply to the analysis, many of which are infrequently met in practice. 

They assume, for example, that researchers have specified in advance stopping rules for 

collecting data (see Dienes, 2011 and Kruschke, Aguinis, and Joo, 2012: 734 for more extensive 

discussions). Researchers also need to specify hypotheses ex ante, and practices such as 
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HARKing invalidate statistical significance estimates. Underpowered studies tend to produce 

unreliable results (Cumming, 2011; Gelman and Carlin, 2014; Cohen 1994) and are common in 

psychology (Bakker, van Dijk, and Wicherts, 2012), economics (Ioannidis, Stanley, and 

Doucouliagos, 2017), and management research (Cashen and Geiger, 2004). It is unclear the 

extent to which these problems apply to strategy research, although several concerns have been 

raised in recent work (e.g., Bergh et al., 2017; Goldfarb and King, 2016). It may be that some of 

the conclusions of major studies in strategic management rely on unmet assumptions; if so, those 

conclusions are simply not supported by the reported empirical analyses.  

In spite of these concerns and limitations, many management researchers apply and 

report statistical significance tests in their research reports and without much discussion or 

accounting for these potential limitations. Consequently, there is a general tendency to assign 

implicitly or explicitly more meaning to what a statistical significance test can tell us (e.g., 

Nuzzo, 2014). In response to a perceived widespread misapplication and misinterpretation of 

statistical significance tests, the American Statistical Association convened a panel of experts to 

draft a policy statement on p-values and statistical significance, which has subsequently been 

published in an effort to increase understanding (Wasserstein and Lazar, 2016). This policy 

statement tries to stop researchers from misinterpreting p-values and encourages researchers to 

start using other information to interpret consistency of data with their hypotheses.2 The 

introduction to a more recent special issue of The American Statistician goes even further with a 

conclusion that “it is time to stop using the term ‘statistically significant’ entirely” (Wasserstein, 

                                                           
2 Confidence intervals suffer from similar misinterpretation issues (Hoekstra et al., 2014; Morey et al., 2016). A 

95% confidence interval produced by a frequentist analysis does not indicate that there is a 95% probability that the 

true parameter lies within that interval. The 95% indicates a property of the procedure not the parameter. More 

specifically, it indicates that if the same sampling procedure were used repeatedly, and interval estimates were 

computed for each sample, it would be expected that the true population parameter falls within the interval estimates 

in 95% of those repeated cases. This interpretation obviously runs into some of the same fundamental issues as do p-

values, including the basic challenge of understanding and clearly communicating the meaning of these intervals. 
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Schirm and Lazar, 2019: 2). For those looking to move beyond the world of statistical 

significance testing, Bayesian methods provide a number of advantages. 

Potential advantages of Bayesian analyses. In contrast to statistical significance tests, 

Bayesian analyses estimate the probability for hypothesized effects to occur, which is typically a 

primary question of interest to researchers. They quantify the level of confidence in the related 

hypothesis being true based on the data observed. In the process, Bayesian analyses also allow 

the incorporation of existing knowledge about the hypothesized effects via the prior distribution. 

The latter fosters a cumulative approach to research. In addition, Bayesian results lend 

themselves to easy communication to other researchers and practitioners (e.g., “there is a 95% 

probability that the effect is at least x”). Bayesian analyses also shift away from the dichotomous 

“effect or no effect” evaluation of statistical significance tests. Instead, Bayesian analyses 

estimate the distribution of effects. These posterior distributions provide detailed information 

about the size of effects and the uncertainty of effects. They can answer a wide variety of 

questions, such as: How strong is the central tendency of the effect? What is the probability of 

effects below or above any desired effect thresholds? How thick are the tails of the effect 

distribution? What are the range and functional form of the effect distribution?3 

Bayesian approaches have a number of other attractive properties. They can help address 

multicollinearity issues (Leamer, 1973). If credible priors are available, meaningful estimates 

even from small samples are feasible. Kruschke, Aguinis and Joo (2012) also highlight that 

                                                           
3 Questions such as these are naturally linked to issues of interest to strategy researchers. For example, a weak 

central tendency in an effect suggests substantial variance across firms while the probability of exceeding thresholds 

is potentially of substantial interest for a field concerned with firms’ ability to earn returns in excess of their cost of 

capital. Hansen, Perry, and Reese’s (2004) study of the relationship between firm performance and a variety of 

corporate actions (e.g., buying a new business unit, laying off staff) demonstrates how questions such as these may 

be answered. The central tendency of the relationship between buying a business unit and accounting returns 

indicated the most likely effect was an increase of approximately one-half of one percent with a probability of 0.81 

of exceeding a threshold of zero effect. The distribution of the effect indicated a slightly left-skewed normal 

distribution that ranged from about -1.2 percent to 2.1 percent with somewhat fat tails. 
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Bayesian methods can deal with a variety of complex data structures and models. As Kruschke 

and Liddell (2018: 161) describe, “any parameterized model of data can have its parameters 

estimated via Bayesian methods,” meaning that results can be generated from nearly all forms of 

statistical analysis familiar to strategy researchers.  

The benefits of Bayesian approaches to strategic management research. A recent survey 

of senior strategy scholars reported in Leiblein and Reuer (2020: 18) noted a broad consensus 

among respondents that “much of the field’s contribution lies in providing rigorous insights to 

general managers and other leaders of organizations.” With their emphasis on estimating the 

distribution of effects, Bayesian methods are well aligned with the informational needs of 

practicing managers. Managers are not interested in the simple presence or absence of a 

particular relationship; instead they want to know about the magnitude of effects and the 

probability that those effects occur. Focusing on effect sizes and the distribution of effects is also 

consistent with recent changes in publication standards at outlets like SMJ as described by Bettis 

et al. (2016: 261): “SMJ will require in papers accepted for publication that authors explicitly 

discuss and interpret effect sizes of relevant estimated coefficients.”  

Bayesian methods are also flexible enough to apply across the broad topical coverage of 

the strategic management field. Moreover, wider adoption of these methods offers the potential 

to extend our thinking about the canonical problems in strategy research. Theories and methods 

are inherently linked. Methods affect not just how we test theories but also the questions we ask. 

Many of our current theories in strategic management are inherently dichotomous (i.e., effect or 

no effect) because that is what we test within the constraints of the existing statistical 

significance paradigm. Methods that devote attention to effect sizes and distribution of effects 

invite richer theorizing, extending and deepening our knowledge. Denrell, Feng, and Zhao 



11 
 

(2013), as just one recent example, demonstrate how Bayesian methods can be deployed to 

examine the relationship between sustained superior performance and superior capabilities, a 

central question in resource-based theories of strategic management. Their analyses, among other 

findings, indicate that sustained performance may not be a particularly reliable indicator in 

settings where chance events have enduring effects.  

Finally, Bayesian approaches align well with one of the foundational principles of the 

field of strategic management. Among other questions, strategy research attempts to answer the 

question of why firms are different, one of the four fundamental issues of the field highlighted by 

Rumelt, Schendel and Teece (1991). Bayesian methods are particularly useful for examining 

differences in relationships for individual firms (e.g., Hansen, Perry and Reese, 2004) as opposed 

to frequentist methods that are more focused on average relationships. Mackey, Barney and 

Dotson (2017) provide a powerful example by applying Bayesian analysis to investigate 

differences in effects across firms within the context of the performance-diversification 

relationship. Their hierarchical Bayesian model allowed them to estimate firm-specific statistics 

and test the hypothesis that profit-maximizing firms vary in the diversification strategies they 

choose. Advantages such as this have led prominent researchers to note that “Bayesian methods 

are well matched to strategic management theory and often more appropriate than traditional 

frequentist approaches” (Jay Barney as quoted in McKee and Miller, 2015: 477).  

Adoption Challenges 

If the Bayesian approach is so useful, why has it not been more widely adopted? First, profound 

philosophical differences between Bayesians and frequentists have been the subject of extended 

historical debates (see Cohen, 1994; Gigerenzer, 2004; Gigerenzer and Marewski, 2015) and 

have limited the propagation of Bayesian methods. At a fundamental level, the two approaches 
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view probability differently. Frequentist view probability in terms of relative frequency of an 

event in the long run. In contrast, Bayesians associate probability with degrees of belief or 

knowledge. These fundamentally different views imply deep and meaningful differences in how 

empirical data is interpreted and the corresponding statistical models to be used. McGrayne’s 

(2011) book provides a rich narrative history of the development of Bayesian thinking and the 

associated conflicts between frequentists and Bayesians. Up to now, this conflict has been clearly 

“won” by the frequentists to the extent that statistical significance tests dominate management 

research. So, one challenge is the ubiquity of frequentist approaches and the comparative 

unfamiliarity of Bayesian methods to editors and reviewers. McKee and Miller’s (2015) survey 

of institutional elites indicated that over 90 percent of respondents never or almost never 

encountered as reviewers papers that used Bayesian statistical analyses. Moreover, just over half 

of them indicated they would not be comfortable reviewing such articles. We do note, however, 

that the increasing number of Bayesian publications in the management literature suggests an 

increasing pool of knowledgeable reviewers. 

 Application of Bayesian methods by more strategy researchers will also require 

investments on the part of researchers to learn how to deploy these methods. Courses on 

Bayesian methods for organizational researchers are not nearly as widespread as those teaching 

frequentist methods (McKee and Miller, 2015), requiring researchers to take a more active role 

in searching out training opportunities. Courses in Bayesian statistics are offered by statistics 

departments at research universities, online course platforms and statistical software providers. 

In addition, collaborations with Bayesian researchers can provide rich learning opportunities. 

Wider adoption will also depend on the inter-relationship with theory, as strategy theories will 

need to evolve to align better with these methods. 
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Finally, we note that more practical considerations have also been a significant issue. 

Perhaps one of the largest barriers to increasing usage has been software-related. As Jebb and 

Woo noted in 2015 noted “many software packages supporting Bayesian statistics are not user-

friendly relative to those commonly used in organizational research (e.g., SPSS, Stata).” Notably, 

however, this has substantially changed since 2015. To prove this point, the next sections 

describe the typical steps of Bayesian analysis and then demonstrates how those steps can be 

easily executed using version 15 of Stata (see Appendix C for a list of Stata resources).4 

Steps in a Bayesian Analysis 

As with many empirical research projects, a Bayesian study begins with identifying a research 

question of interest and collecting data appropriate to examine it. Once the data have been 

gathered and the researcher is ready to analyze, the first step is selection of a probability 

distribution and modeling approach appropriate for the particular dependent variable. The 

researcher should choose a distribution considering what is known about the dependent variable 

and the population that produced the observed data. For example, an analyst might opt for a 

Poisson distribution to model a count-based dependent variable or a binomial distribution to 

model a dichotomous dependent variable. Jebb and Woo (2015) provide a table that links various 

canonical forms of data (e.g., continuous, count, or categorical data) with their associated 

probability distributions for the likelihood, and the standard analytic approaches associated with 

each (e.g., linear, Poisson, or logistic regression). For researchers trained in frequentist methods, 

this step should be quite familiar. 

                                                           
4 Zyphur and Oswald (2015) provide an excellent discussion of Bayesian approaches along with examples using 

Mplus. Jebb and Woo (2015) similarly demonstrate another software solution, BugsXLA an Excel add-in that works 

in combination with WinBUGS. 
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 The next step in the process, however, is unique to Bayesian analyses. The researcher 

must specify a prior probability distribution for the effect of each independent variable in the 

model (typically referred to as “priors”). This requires both deciding the general distributional 

form (e.g., uniform, normal, lognormal) and the hyperparameters that further specify this 

distribution – for example, a normal distribution with the mean of zero and a variance of 1. The 

prior distribution represents what is known about the effect prior to observing the data (Lynch, 

2007). Priors are generally classified into the two categories of informative or uninformative.  

 Uninformative priors assume an equal or relatively equal probability across the range of 

feasible effect outcomes. These priors have flat densities and have also been labeled vague, 

diffuse, or flat priors. Researchers tend to choose uninformative priors when they lack credible 

information justifying unequal outcome probabilities.  

 Informative priors, in contrast, specifically include existing information about parameter 

probability distributions. Informed priors foster parameter estimation that is a combination of 

both the observed data and existing knowledge represented by the informed prior. A clear benefit 

of informative priors is that they allow current analyses to be informed by past findings, fostering 

a cumulative approach to the production of knowledge. They are also particularly valuable in 

small sample research, given the high degree of uncertainty due to sampling error. Even vague 

but correct prior information about the expected distribution of effects will improve the quality 

of estimated posterior distributions (Gelman, 2009). Priors may be informed by theory, 

individual prior empirical studies, meta-analyses, or elicited expert opinion.5 To date, the use of 

informative priors in Bayesian studies within management remains relatively rare.6 The 

                                                           
5 O’Hagan et al. (2006) and Gill (2015) provide advice on how to elicit expert opinions and convert that information 

into probability distributions. 
6 See LoPilato, Carter, and Wang (2015) for an exception that examines several different types of priors including 

informative ones. 



15 
 

development, accumulation, and use of informative priors represents an opportunity for future 

development as Bayesian methods spread through the field.  

 The dichotomous categorization of uninformative and informative priors, however, is a 

strong and often misleading simplification. There are no completely uninformative priors, so it 

makes more sense to think of how informative a prior is in continuous terms. Weakly 

informative priors allow the researcher to formulate priors based on rather limited information 

available about the phenomenon under study. In the end, the amount of influence of the prior on 

the posterior depends on the sample size. Hence, researchers have to be more concerned about 

the impact of priors when dealing with small samples. The use of large samples imply that priors 

tend to have relatively little influence on posterior distributions, a situation referred to as 

likelihood dominance (Lancaster, 2004). Ultimately, any prior selected does make assumptions 

and has the potential to affect posterior distributions.  Hence, researchers should always 

explicitly describe and justify the priors they use and perform sensitivity analyses to assess and 

interpret their impact on posterior distributions. 

As an example of how prior distribution choices can vary, consider examining the 

association between profitability and an indicator of whether a firm is owner-managed or 

managed by a hired CEO. If one assumes a normal distribution is a good representation of the 

distribution of the effect, specifying the prior requires selecting two hyperparameters, the mean 

and the variance. A relatively uninformative prior would presume no particular directionality for 

the effect and would specify a large variance. Such a choice might result in a prior distribution of 

N(0, 10000), which represents the default normal prior with a mean of zero and a variance of 

10,000 in the Stata software package (StataCorp, 2017). A more informative prior might 

recognize that profitability is generally constrained to a smaller range and specify 
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hyperparameters reflective of this observation, say as N(0, 9). This prior represents the 

researcher’s belief, prior to data collection, that approximately 95% of the distribution of the 

parameter lies between -6 (mean less two standard deviations) and +6. Researchers could also 

draw on specific prior related research on the effect of owner management, such as Kulchina 

(2017), who reported a slightly positive mean and assign an even smaller variance, say N(0.3, 

0.4). Researchers are, of course, not constrained to priors based on the normal distribution. For 

example, a lognormal (0.3, 0.4) distribution represents a right-skewed distribution relative to 

N(0.3, 0.4). Another alternative would be to select a uniform prior, e.g., U(-1.0, 1.0) that assigns 

constant probability across a range of values. Selection of a prior might initially appear 

confusing to researchers only familiar with statistical significance tests. The lack of Bayesian 

management studies also means that existing research provides limited guidance and conventions 

for developing and justifying priors. This will change as Bayesian analysis becomes more 

established. The need to identify priors might initially feel like a challenge; in the end, however, 

it represents a strength of Bayesian analysis as it encourages the explicit integration of prior 

knowledge into current empirical investigation. This promotes knowledge accumulation and 

enables meaningful conclusions from smaller samples. Still, sensitivity analyses should always 

be performed to see how the choice of prior distribution affects estimation results.  

Once the prior distributions have been specified, the observed empirical data is used to 

estimate model parameters. The Bayesian algorithms use the prior distribution of effects as their 

starting point and update this distribution using the observed data. Before interpreting results, 

however, it is important to conduct a number of checks of the adequacy of the estimation 

algorithms (see Depaoli and van de Schoot (2017) for a more extensive discussion).  
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Post-Estimation 

As noted above, posterior distributions of parameters are produced via MCMC methods in 

Bayesian estimation. Kruschke (2015: 178) highlights that researchers should be concerned with 

both representativeness/convergence and stability/accuracy when using MCMC sampling to 

generate posterior distributions. For representativeness, values in the Markov chain should fully 

represent the range of the posterior, and they should not be influenced by arbitrary initial values 

of the chain. For stability and accuracy, estimates should be similar if MCMC estimation is 

duplicated (with a change in the seed number used for random number generation).  

Representativeness and convergence. One primary concern to check with MCMC 

sampling is convergence (Lynch, 2007). Convergence refers to whether the Markov chain has 

adequately explored the targeted posterior distribution and is drawing mainly from the bulk of 

the distribution, but also still reasonably from the tails. A good chain will also mix rapidly; 

mixing refers to the rate at which a Markov chain explores the parameter space and reaches 

convergence. A variety of statistical tools are available to evaluate chain convergence (Sinharay, 

2004). Convergence is typically first assessed by examining trace plots of estimates, which 

depict the value of each sampled parameter value (along the y-axis) across iterations (x-axis). 

Once a model has converged, the traceplot should show movement around the mode of the 

distribution. In other words, the chains should remain in the same general region but demonstrate 

vertical movement in the plot to indicate adequate sampling and representativeness.  

Another recommended way to assess convergence is to use multiple chains that start from 

different initial values and then compare their results (Lynch, 2007). A common test using 

multiple chains is the Gelman-Rubin convergence diagnostic, which compares the variance 

between chains relative to variance within chains. The more similar the variance of each chain, 
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the greater the degree of convergence. Fully converged chains have a value of 1. Large 

differences among the multiple chains are indicative of non-convergence (Gelman and Rubin, 

1992; Kruschke, 2015), and non-convergence indicates that chain values are not representative of 

the posterior distribution. Problems with non-convergence are often addressable via increasing 

the length of the chain (i.e., increase the number of iterations). For more extensive discussion of 

methods of assessing convergence see Cowles and Carlin (1996) and Gelman et al. (2014). 

Stability and accuracy. A researcher should also examine autocorrelation. Ideally, each 

draw from the posterior would provide a unique piece of information; however, the Markov 

nature of the algorithm means that it produces dependent samples by definition. Hence, samples 

are correlated. Autocorrelation starts at some positive value for early samples, but should 

decrease as the lag index increases in well-mixing chains. Whether this occurs can be assessed 

visually with autocorrelation plots. These plots show autocorrelation values across the sequence 

of generated samples. Stability of the estimates is also captured by the effective sample size 

(ESS). It reports the total number of independent MCMC samples out of the total number of 

MCMC samples. The closer the value is to the total, the less autocorrelation, and low 

autocorrelation indicates stability and accuracy of estimates.  

Two final plots worth examining are the histogram and kernel density plots of the 

posterior distribution. Histograms depict the exact proportion of points in each bin while density 

plots average across overlapping intervals to generate a continuous depiction. In most cases, 

researchers expect plots to be relatively smooth and precise. Lumpy or multi-modal distributions 

provide important information for interpreting the stability and accuracy of hypothesized effects. 

Such distributions, however, can also be the result of convergence issues, which would suggest 

repeating estimations with longer burn-in rates and longer estimation runs (see Depaoli and van 
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de Schoot (2017) for examples of both favorable and problematic plots). These plots can also be 

split across the first and second half of the samples and compared to ensure they are similar to 

each other and close to the overall density estimate.  

Reporting of Results 

The focus of reporting is the posterior distribution of the parameters of interest. In addition to 

representing these distributions graphically, researchers typically report both measures of central 

tendency and distribution for hypothesized effects. Central tendency is reported using the mean, 

median, and mode. The precision of the estimated posterior mean is commonly evaluated with 

the Monte Carlo standard error (MCSE), which reports how much error is in the estimate due to 

the fact that MCMC is used, and it quantifies how much one might expect the estimate to vary if 

the analysis were run again. As the number of MCMC iterations increases, MCSE decreases.  

Bayesian researchers also typically report two types of intervals. The first is an equal-

tailed credibility interval, which reports an interval where the probability of the parameter being 

below the interval is as likely as being above it. For example, a 95% equal-tailed interval has two 

tails of 2.5% and provides a range such that the probability the parameter lies within that range 

given the data is 95%. It is also important to note that while this credibility interval may sound 

similar to a 95% confidence interval produced by frequentist methods, the two are fundamentally 

different. Confidence intervals do not provide a probability statements for hypothesized effects. 

In addition, Bayesian credibility intervals consider their bounds fixed and estimated statistics as 

random variables within these bounds. Frequentist confidence intervals consider their bounds as 

random variables and statistics as fixed values. The second frequently reported interval is the 

highest posterior density (HPD) interval, which provides an interval of the shortest width for a 

particular probability level. For symmetric posterior distributions, the two intervals should be 
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quite similar; however, the HPD interval may be preferable in cases of asymmetric or skewed 

posterior distributions.  

 Kruschke (2015: 336) suggests comparing the HPD interval to a particular “region of 

practical equivalence” (ROPE) for more sophisticated decisions regarding the parameter of 

interest. Testing a hypothesis against the baseline of absolutely no effect often represents a less 

meaningful evaluation (Cohen, 1990; Schwab and Starbuck, 2012). For example, a researcher 

might be interested in whether a regression coefficient is practically non-zero. The research 

might specify that in the specific context coefficient values of -0.02 to +0.02 are practically 

equivalent to zero (a ROPE of {-0.02, 0.02}). The non-zero hypothesis would be accepted if the 

95% HPD interval falls completely outside the ROPE. In contrast, the zero effect hypothesis 

would be accepted if the 95% HPD interval falls completely inside the ROPE (i.e., all of the 95% 

most credible values are practically equal to zero). When the HPD interval and the ROPE 

overlap, the researcher withholds a decision. Under this approach, both non-zero effect and zero-

effect hypotheses with various effect size thresholds can be accepted (or rejected) based on 

corresponding effect size and effect probability estimates. This is a clear departure from 

frequentist approaches that only center on the possible rejection, but not acceptance, of null 

hypotheses. In contrast, Bayesian analysis can provide probability estimates for both the zero-

effect and non-zero effect hypotheses being true. 

Aggregate measures of distribution can help describe and compare distribution 

characteristics. Researchers, however, should always also report graphs of the posterior 

distribution because they provide the most powerful way to communicate rich and 

comprehensive distributional information, information that enables the simultaneous evaluation 

of effect size and effect uncertainty (Schwab, 2018; Greve, 2018). Beyond the dichotomous 
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“effect or no-effect” evaluations outlined above, graphs of posterior distributions provide 

detailed probability information for any hypothesized effect being larger than any effect size 

level considered of substantive or practical importance. The available Bayesian software 

solutions all offer routines for creating posterior distribution graphs. 

How to Execute Bayesian Analysis with Stata: An Example  

The introduction of MCMC-based Bayesian routines in commonly used software packages has 

substantially reduced the time and effort needed to execute Bayesian analyses. For a simple 

illustration, we perform a Bayesian analysis using a publicly available small data set 

accompanying Wooldridge (2013), which permits a straightforward study of the relationship 

between firm performance and CEO compensation. The data include the salaries of 209 CEOs 

for the year 1990, as well as firm revenue and performance metrics like return on equity and 

return on sales (3-year averages from 1988-1990). Additional measures include dummy variables 

indicating whether the firm was primarily an industrial, financial, consumer product, or utilities 

firm (transportation being the omitted industry). All code to conduct the analysis, which can be 

generated easily in Stata via menu-driven choices, is included in Appendix B. Beginning with 

version 15 of Stata, users may easily estimate a wide variety of models using Bayesian 

approaches. Model specification is as easy as typing “bayes:” in front of any of 46 estimation 

commands. A broad assortment of options can be specified using easy-to-follow, menu-driven 

commands.  

 In our example, the model is a multivariate regression, where CEO salary (logged) is 

predicted from sales (logged) and the consumer products industry dummy.7 

                                                           
7 To facilitate explanation, we present a relatively simple model; however, this should not be interpreted as 

limitation of Stata, which can fit a wide variety of models. Logit or probit models are easily estimated in Stata as are 

models for count-based dependent variables (e.g., Poisson or negative binomial). Sample selection models (e.g., 

OLS and probit models with Heckman corrections) and multilevel models are available as well.   
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0 1 2i i i ilsalary lsales consprod        

The residuals are normally distributed with a mean of 0 and constant variance, represented by 

2 . To estimate this model using Bayesian methods, the first steps are to specify a likelihood 

and prior distributions for all parameters in the model. For a linear regression model, such as this 

one, the normal distribution is a common choice for the likelihood; an alternative approach to 

accommodate concerns such as possible outliers would be to fit a robust linear regression model 

using the t-distribution (which features heavier tails) for the likelihood. The model has four 

unique parameters, 2

0 1 2, , ,  and     . As an initial estimation approach, the model employs the 

default priors specified by Stata 15.1; the default for regression coefficients are normal 

distributions with mean 0 and variance 10,000. The default for the variance is an inverse gamma 

with shape parameters of 0.01 and 0.01. These represent uninformative priors. Alternatively, 

researchers can (and often should) consider priors based on findings in prior studies, theories or 

expert judgements. Uninformative priors are used here for simplicity and illustrative reasons. 

 To illustrate the effects of different numbers of MCMC iterations, three different analyses 

were conducted with totals of 12,500 (the Stata default setting), 62,500, and 125,000 iterations. 

Because it can take some time for MCMC algorithms to begin sampling more heavily from the 

modal region of the posterior distribution (meaning toward the center and not the tails), it is 

routine to discard an initial set of several hundreds or thousands of iterations (referred to as the 

burn-in period). In each of the analyses run, the first 20% of the iterations were discarded. Table 

1 shows that the mean values change very little across the analyses; however, they are estimated 

with increasing precision, as indicated by the decreasing MCSE values.  

Examination of the trace plots for each parameter (produced with bayesgraph trace _all) 

show relatively constrained horizontal bands with adequate movement above and below the 
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midpoint of the bands, indicating reasonable convergence and mixing. As examples, the trace 

plots for the lsales parameter for each estimation are included as Figures 1a-1c. Autocorrelation 

plots from Model 3 (produced with bayesgraph ac _all) shown in Figures 2a-2d demonstrate 

rapidly decreasing autocorrelations at larger lag values.  

-------Insert Table 1, Figures 1a-1c, Figures 2a-2d about here------- 

Examination of the Gelman-Rubin statistic, which assesses whether changes converge on 

the same space even when starting from different initial values, provided further support to the 

conclusion of adequate convergence. Three additional, separate chains were run with different 

initial starting values, and the user-written Stata command grubin, was used to compute the 

Gelman–Rubin diagnostic. The grubin command is unfortunately not written to be compatible 

with the simple approach of merely adding a bayes prefix to a typical regression command. It 

necessitates the use of the more general bayesmh command that requires the user to specify all 

aspects of the estimation.8 As seen in Appendix B, however, this is relatively straightforward to 

accomplish. The Gelman-Rubin convergence statistic indicated no convergence concerns.  

How should researchers interpret the results of this Bayesian analysis? Based on Model 3 

of Table 1, Figure 3a shows the posterior distribution of the lsales coefficient, easily graphed 

using the Stata command of bayesgraph histogram {lsales}. With both the dependent and 

independent variable logged, the coefficient represents the estimated percent change in sales for 

a one percent increase in CEO salary. That is, the mean value of lsales of 0.259 suggests that a 

ten percent increase in sales is associated with a 2.6% increase in CEO salary. For a CEO 

operating a company at the median salary level of $1.04 million, increasing sales by 10% is 

associated with a salary increase of approximately $27,000. The mean value of consprod of 

                                                           
8 Version 16 of Stata includes a new bayesstats grubin command to allow more direct post-estimation calculation of 

the Gelman-Rubin convergence diagnostic.   
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0.286 indicates that consumer-product CEOs make approximately 33% more on average relative 

to CEOs in other industries. Figures 3a and 3b also indicate the 95% credibility interval for each 

coefficient, which provides the upper and lower limits for the middle 95% of the distribution; 

given the relatively symmetric natures of the distributions, the highest posterior density (HPD) 

intervals are quite similar. 

-------Insert Figures 3a and 3b about here------- 

Bayesian analysis also permits assessing a wide variety of different hypotheses that may 

be of interest, and these post-estimation tests are easily implementable in Stata using the 

bayestest interval command. Say, for example, a researcher is interested in assessing the 

probability that the effect of being a consumer product CEO relative to other industries is 20% or 

higher. This corresponds to calculating the probability that 2 0.182  9, and the results indicate 

this probability is 0.918. Similarly, one could ask the probability that the sales effect is less than 

0.2% for a 1% change in sales, i.e., the probability that 1 0.2  ; the corresponding probability is 

0.038. 

Researchers can also evaluate the relative support for different models using “Bayes 

factors” (Kass and Raftery, 1995). A Bayes factor is a model comparison statistic that quantifies 

the relative evidence two models receive given the collected data. An attractive feature is that the 

models do not have to be nested to be compared. The interpretation of a Bayes factor (BF) is 

relatively straightforward. For example, if BF(M1, M2)=5, there is 5 times more evidence in the 

data supporting Model A compared to Model B. Estimating Bayes factors is easily accomplished 

in Stata using the bayesstats ic command after running multiple models. To demonstrate this, we 

                                                           
9 With a logged dependent variable, a one-unit change in the independent variable (from 0 to 1) has an effect of 

exp(b) on the DV in unlogged units. A beta of 0.182 is equivalent to a 20% increase in sales (exp(0.182)=1.199). 
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return to the salary data, which includes two profitability measures: return on equity (ROE) and 

return on sales (ROS). Comparing a model that utilizes ROE to one that utilizes ROS leads to the 

logged BF(MROE, MROS) =7.14, indicating greater evidence for the ROE model. For more 

extensive examples of the use of Bayes factors in management models, see Andraszewicz et al. 

(2015), Braeken, Mulder, and Wood (2015), and Kass and Raftery (1995). 

Finally, sensitivity analyses to evaluate the impact of priors on the posterior distribution 

often make sense. The code in Appendix B shows how alternative priors are easily 

accommodated by simply including an additional option in the regression command.10 Default 

priors continue to be used for any parameters not listed. The results reported in Table 2 indicate 

that in our case reported estimates are largely unaffected by the specification of more informative 

priors, e.g., priors with reduced variance.  

-------Insert Table 2 about here------- 

CONCLUSION 

Bayesian methods provide a powerful alternative to traditional frequentist approaches. Most 

importantly, they enable researchers to estimate the probability that an effect of a particular size 

is present. Moreover, they facilitate incorporating prior existing knowledge about the 

phenomenon, thereby fostering a cumulative approach to research. Bettis and Blettner (2020: 6) 

cite a key goal of strategy research to be making “our scholarship more meaningful to the 

accumulation of knowledge.” Leiblein and Reuer (2020: 3) similarly note that the “construction 

of a robust, cumulative body of knowledge” is a key opportunity and challenge facing the field 

                                                           
10 To follow the default estimation approach, the additional block option must also be specified. When priors are not 

specified, Stata’s default is to sample all regression coefficients in one block. Sampling parameters simultaneously 

in one block generally increases the efficiency of the sampler, particularly when parameters are correlated. If a non-

default prior is specified for a particular parameter, it will be sampled in a separate block unless the block option is 

included. 
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of strategic management. Bayesian approaches are strongly aligned with this philosophy of 

building upon what is already known in order to accumulate and extend knowledge. 

 Results from Bayesian analysis also naturally lend themselves to a stronger focus on 

effect sizes rather than the dichotomous question of the presence or absence of effects. This 

focus answers recent calls in strategy research to pay greater attention to effect sizes (Bettis et 

al., 2016), and it is consistent with the needs of practicing managers. The first sentence of the 

Division Statement for the STR Division of the Academy of Management clearly emphasizes the 

link to practice: “The division encourages and supports the development and dissemination of 

knowledge relevant to general managers.” What is most relevant to practicing managers is not 

the simple presence or absence of effects but rather the size of effects and the uncertainty 

associated with those effects. Bayesian methods are much better suited to meeting the call to 

produce managerially relevant knowledge. 

 The value of Bayesian methods has contributed to their increasing prominence in several 

academic fields. Regardless of the state of change in other fields, the “Bayesian revolution” has 

yet to reach the field of strategic management. Attention to Bayesian methods, however, is 

growing as evidenced by the increasing number of Bayesian studies and overviews in the 

management literature. Still, the number of scholars with expertise in Bayesian statistics is 

limited (McKee and Miller, 2015). Hence, Bayesian studies have to provide clear and convincing 

descriptions of these less familiar methods. As such, conducting and publishing Bayesian studies 

requires additional time and effort on the part of researchers. Still, many positive signs indicate 

that these obstacles are eroding. Relatively straightforward, easy-to-follow advice on how to 

conduct, review, and report Bayesian studies is now available to help guide authors and 

reviewers (Hahn, 2014; Kruschke, 2015; Gelman et al., 2014; Gill, 2015). Support for Bayesian 
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methods is strong among many leading management scholars in the field (McKee and Miller, 

2015). Equally important, one significant obstacle that has prevented the broader adoption of 

these methods, namely the lack of easy-to-use, point-and-click software that implements 

Bayesian analysis, is quickly disappearing. In particular, strategy researchers who use Stata will 

find that this obstacle has been largely removed with the release of Stata version 15, which 

supports easy Bayesian estimation of over 45 different models using menu-driven commands. 

These advancements are, however, not limited to Stata as SPSS, MPlus, R and other programs 

are continuously introducing improved Bayesian routines. Given these positive developments, 

strategy scholars with skeptical prior beliefs about the potential of Bayesian studies should 

definitely update those beliefs in light of this new evidence.    
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Table 1. Bayesian Estimates 

 

Model 1 (MCMC iterations=12,500; MCMC sample size=10,000 )

Coefficients Mean SD MCSE Median ESS

lsales 0.2579 0.0342 0.0013 0.2577 0.1934 0.3252 697

consprod 0.2848 0.0785 0.0029 0.2843 0.1245 0.4378 710

_cons 4.7304 0.2861 0.0110 4.7291 4.1569 5.2630 672

sigma2 0.2411 0.0247 0.0006 0.2400 0.1982 0.2942 1876

Model 2 (MCMC iterations=75,000; MCMC sample size=62,500 )

Coefficients Mean SD MCSE Median ESS

lsales 0.2586 0.0333 0.0004 0.2582 0.1941 0.3249 8227

consprod 0.2861 0.0741 0.0011 0.2865 0.1399 0.4323 4785

_cons 4.7239 0.2797 0.0031 4.7246 4.1680 5.2631 8092

sigma2 0.2409 0.0239 0.0002 0.2395 0.1980 0.2916 12755

Model 3 (MCMC iterations=125,000; MCMC sample size=100,000 )

Coefficients Mean SD MCSE Median ESS

lsales 0.2589 0.0333 0.0003 0.2588 0.1937 0.3245 12662

consprod 0.2862 0.0740 0.0009 0.2864 0.1394 0.4312 7379

_cons 4.7218 0.2791 0.0025 4.7207 4.1713 5.2663 12611

sigma2 0.2409 0.0240 0.0002 0.2395 0.1984 0.2924 20759

95% Cr. Interval

95% Cr. Interval

95% Cr. Interval
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Table 2. Bayesian Estimates using Alternative Priors 

 

Model 3 (Default priors used for all model parameters )

Coefficients Mean SD MCSE Median ESS

lsales 0.2589 0.0333 0.0003 0.2588 0.1937 0.3245 12662

consprod 0.2862 0.0740 0.0009 0.2864 0.1394 0.4312 7379

_cons 4.7218 0.2791 0.0025 4.7207 4.1713 5.2663 12611

sigma2 0.2409 0.0240 0.0002 0.2395 0.1984 0.2924 20759

Model 4 (Prior for lsales and consprod: normal (0,10); defaults for other parameters )

Coefficients Mean SD MCSE Median ESS

lsales 0.2592 0.0337 0.0004 0.2592 0.1931 0.3260 6902

consprod 0.2864 0.0748 0.0008 0.2861 0.1407 0.4336 8887

_cons 4.7192 0.2829 0.0034 4.7183 4.1603 5.2780 7008

sigma2 0.2408 0.0241 0.0002 0.2394 0.1981 0.2929 20077

Model 5 (Prior for lsales and consprod: normal (0,0.1); defaults for other parameters )

Coefficients Mean SD MCSE Median ESS

lsales 0.2558 0.0335 0.0004 0.2558 0.1905 0.3215 8659

consprod 0.2714 0.0723 0.0008 0.2710 0.1286 0.4124 8965

_cons 4.7509 0.2808 0.0030 4.7513 4.1972 5.2997 8741

sigma2 0.2409 0.0240 0.0002 0.2394 0.1984 0.2921 20213

95% Cr. Interval

95% Cr. Interval

95% Cr. Interval
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Figure 1. Trace Plots of lsales Parameter from Models 1 – 3  

 

 
Figure 1a 

 

 
Figure 1b 

 

 
Figure 1c 
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Figure 2. Autocorrelation Plots of Parameters from Model 3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2a      Figure 2b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2c      Figure 2d 
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Figure 3. Histograms from Model 3 

 

 
Figure 3a 

(dark line indicates mean; dotted lines indicate equal-tailed 95% Cr. Interval) 

 

 

 
Figure 3b 

(dark line indicates mean; dotted lines indicate equal-tailed 95% Cr. Interval) 
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Appendix A – Key Terms 

 

Bayes Factor: An index quantifying the amount of evidence for a particular hypothesis relative 

to another; a ratio of the likelihood of two competing models or hypotheses 

Burn-In: The preliminary period of an MCMC algorithm during which the chain moves from 

unrepresentative initial values to the bulk of the posterior; these iterations are discarded 

from the sample. 

Convergence: Refers to whether an MCMC algorithm has reached a point that it is adequately 

sampling from the bulk of the posterior distribution of interest. 

Credibility Interval: Interval estimate that indicates the parameter values that have the most 

probability given the data and prior distributions (a 95% credible interval is an often 

reported interval). 

Effective Sample Size: A measure of the efficiency of MCMC that indicates the number of 

independent observations in an MCMC sample; small ESS relative to the MCMC sample 

size can be a sign of poor mixing. 

Gelman-Rubin Statistic: A numerical measure of whether multiple chains converge on the 

same posterior distribution. 

Highest Posterior Density (HPD) Interval: An interval in which the minimum density of every 

point within the interval is equal to or larger than the density of any point outside the 

interval; an HPD interval has the shortest width relative to all other credible intervals.  

Hyperparameters: Parameters of the prior distribution (e.g., the mean and variance of a normal 

prior). 

Likelihood: The probability of data given parameters in the model. 

Markov Chain Monte Carlo (MCMC): A simulation approach for generating samples from 

probability distributions used to estimate the posterior probability distribution in 

Bayesian statistics. Algorithms are used to repeatedly sample from the posterior 

probability distribution.  

Mixing: refers to the rate at which a Markov chain explores the parameter space; poor mixing 

refers to a slow rate to reach convergence. 

Monte Carlo Standard Error (MCSE): Standard error of the posterior mean estimate; provides 

a measure of how much error is in the estimate due to the fact that MCMC is used. 

Parameter: An unknown value in a population. 

Posterior Distribution: A probability distribution determined by the likelihood of the 

parameters and their prior distribution. 

Prior Distribution: Probability distribution of parameter values formed based on existing 

knowledge of the parameters prior to observing the data, characterized by 

hyperparameters of the distribution; priors vary in how informative they are.  
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Appendix B – Stata Code 

 
cscript 
version 15.1 
 
use http://fmwww.bc.edu/ec-p/data/wooldridge/ceosal1, clear 
 
/*Describe variables in data set*/ 
 describe 
 
/*Included in case frequentist estimates are of interest for later comparison*/ 
 regress lsalary lsales consprod  
 
/*****************************Bayesian Model Estimation**************************************** 
*Note: set seed # specifies the initial value of the random-number seed used by the random-number functions 
*including this command ensures additional runs of the code produce same results 
* 
*********************************************************************************************/ 
 
 set seed 76 
 bayes, saving(salreg1,replace): regress lsalary lsales consprod  
 estimates store salreg1 
  
 /*Effective sample size information*/ 
  bayesstats ess 
 
 set seed 76 
 bayes, mcmcsize(62500) burnin(12500) saving(salreg2,replace) : regress lsalary lsales consprod 
 estimates store salreg2 
 /*Effective sample size information*/ 
  bayesstats ess 
 
 
 set seed 76 
 bayes, mcmcsize(100000) burnin(25000) saving(salreg3,replace) : regress lsalary lsales consprod 
 estimates store salreg3 
 /*Effective sample size information*/ 
  bayesstats ess 
 
 *Report results of last model with HPD interval 
 bayes, hpd 
 
  
/***Model Checks***/ 
 /*Convergence using trace plots - note curly bracket required around name of parameter*/ 
  estimates restore salreg1 
  bayesgraph trace {lsales} 
 
  estimates restore salreg2 
  bayesgraph trace {lsales} 
 
  estimates restore salreg3 
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  bayesgraph trace {lsales} 
 
 /*Autocorrelation Plots - note that plots for all parameters produced using _all*/ 
  bayesgraph ac _all 
 
 /*Other diagnostic graph - not included in paper*/ 
  bayesgraph kdensity _all 
 
 
 
/*Multiple Chain Convergence - grubin requires use of bayesmh*/ 
 
 set seed 76 
 bayesmh lsalary lsales consprod, likelihood(normal({sigma2})) prior({lsalary:}, normal(0,10000)) 
prior({sigma2}, igamma(0.01,0.01)) initial ({lsalary:} 0.9) block({lsalary:}) saving(salreg_ch1,replace) 
 estimates store salreg_ch1 
 
 set seed 76 
 bayesmh lsalary lsales consprod, likelihood(normal({sigma2})) prior({lsalary:}, normal(0,10000)) 
prior({sigma2}, igamma(0.01,0.01)) initial ({lsalary:} 0.01) block({lsalary:}) saving(salreg_ch2,replace) 
 estimates store salreg_ch2 
 
 set seed 76 
 bayesmh lsalary lsales consprod, likelihood(normal({sigma2})) prior({lsalary:}, normal(0,10000)) 
prior({sigma2}, igamma(0.01,0.01)) initial ({lsalary:} 2) block({lsalary:}) saving(salreg_ch3,replace) 
 estimates store salreg_ch3 
 
 *Gelman–Rubin convergence statistic 
 *the following command must be run the first time the code is used: net install grubin, 
from("http://www.stata.com/users/nbalov") 
  grubin, estnames(salreg_ch1 salreg_ch2 salreg_ch3) 
 
 
/*Extract values from stored estimates to draw graphs*/ 
 estimates restore salreg3 
 bayes 
 
 local ls_mean=el(e(mean),1,1) 
 local ls_lower=el(e(cri),1,1) 
 local ls_upper=el(e(cri),2,1) 
 
 local cp_mean=el(e(mean),1,2) 
 local cp_lower=el(e(cri),1,2) 
 local cp_upper=el(e(cri),2,2) 
 
 
/*Draw histograms*/ 
 bayesgraph histogram {lsales}, addplot(function y=`ls_mean', horizontal range(0 12) lcolor(black) 
lwidth(thick) || function y=`ls_upper', horizontal range(0 2.5) lcolor(black) lpattern(dash) || function y=`ls_lower', 
horizontal range(0 2.5) lcolor(black) lpattern(dash)) legend(off) 
 bayesgraph histogram {consprod}, addplot(function y=`cp_mean', horizontal range(0 6) lcolor(black) 
lwidth(thick) || function y=`cp_upper', horizontal range(0 2.5) lcolor(black) lpattern(dash) || function 
y=`cp_lower', horizontal range(0 2.5) lcolor(black) lpattern(dash)) legend(off) 
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/*Post-Estimation Tests*/ 
*Intervals 
 *Confidence that consumer products CEOs make at least 20% more 
  bayestest interval {lsalary:consprod}, lower(0.182321557) 
 *Confidence that sales effect is less than .2% for a 1% change in sales 
  bayestest interval {lsalary:lsales}, upper(.2) 
 
 
/*Model comparison using Bayes Factors*/ 
 set seed 76 
 bayes, mcmcsize(100000) burnin(25000) saving(salreg4,replace) : regress lsalary lsales consprod ros 
 estimates store salreg4 
 
 set seed 76 
 bayes, mcmcsize(100000) burnin(25000) saving(salreg5,replace) : regress lsalary lsales consprod roe 
 estimates store salreg5 
 
 bayesstats ic salreg4 salreg5 
 
 
/*Alternative priors*/ 
 /*Base model*/ 
  set seed 76 
  bayes, mcmcsize(100000) burnin(25000) saving(salreg6,replace) : regress lsalary lsales consprod 
  estimates store salreg6 
  bayesstats ess 
 
 /*Alternative priors - note need to include block statement*/ 
  set seed 76 
  bayes, mcmcsize(100000) burnin(25000) prior({lsalary:lsales}, normal(0,10)) 
prior({lsalary:consprod}, normal(0,10)) block({lsalary:}) saving(salreg7,replace) : regress lsalary lsales consprod 
  estimates store salreg7 
  bayesstats ess 
 
  set seed 76 
  bayes, mcmcsize(100000) burnin(25000) prior({lsalary:lsales}, normal(0,.1)) 
prior({lsalary:consprod}, normal(0,.1)) block({lsalary:}) saving(salreg8,replace) : regress lsalary lsales consprod 
  estimates store salreg8 
  bayesstats ess 
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Appendix C – Stata-Specific Bayes Resources 

 

 

 Overview of features: 

o https://www.stata.com/features/bayesian-analysis/ 

 

 Stata Bayesian Analysis. Reference Manual: 

o https://www.stata.com/manuals/bayes.pdf 

 

 Bayesian regression models using the bayes prefix: 

o https://www.stata.com/features/overview/bayes-prefix/ 

 

 Thompson, J. (2014). Bayesian analysis with Stata. College Station, TX: Stata Press: 

o https://www.stata.com/bookstore/bayesian-analysis-with-stata/ 

o (note that this book does not cover the latest version of Stata) 

 

 Stata Bayesian Analysis Videos: 

o https://www.youtube.com/playlist?list=PLN5IskQdgXWktwVOxs3vAVkI4jpMX

3pIv 

o Introduction to Bayesian statistics, part 1: The basic concepts 

o Introduction to Bayesian statistics, part 2: MCMC and the Metropolis Hastings 

algorithm 

o Bayesian linear regression using the bayes prefix 

o Bayesian linear regression using the bayes prefix: How to specify custom priors 

o Bayesian linear regression using the bayes prefix: Checking convergence of the 

MCMC chain 

o Bayesian linear regression using the bayes prefix: How to customize the MCMC 

chain 

o (note that the first two videos cover Version 14; the last four cover Version 15) 
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